University of California, Berkeley Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 3

- **1.** Griffiths 10.3.
- **2.** Griffiths 10.5.
- **3.** Griffiths 10.7.
- 4. Griffiths 10.10.
- **5.** Griffiths 10.13.
- **6.** Griffiths 10.14.
- 7. Griffiths 10.20.
- **8.** Consider two electrons each traveling with constant velocity $\beta c\hat{z}$ in the \hat{z} direction, separated by a distance $\hat{x}b$ perpendicular to the \hat{z} direction.
- (a) Working in the electrons' mutual rest (*) frame, find the force F_x^* with which one electron repels the other.
- (b) Using the fact that $\Delta p_x^* = \Delta p_x$ is a Lorentz invariant, but $\Delta t^* = \sqrt{1 \beta^2} \Delta t$ is not, find the force F_x of repulsion between the two electrons as evaluated in the lab frame.
- (c) As an alternative to the approach (a)+(b), work directly in the lab frame. Using Griffiths Eqs. (10.65-10.66), evaluate the electromagnetic fields created by one electron at the position of the other. Use these fields to evaluate the force of mutual repulsion, and compare your answer to (b).